

Advanced Remote-sensing Imaging Emission Spectrometer ARIES

A Global Earth System Science Instrument Concept

Science Benefits and Technical Approach

T. Pagano, M. Chahine, A. Gerber Jet Propulsion Laboratory

March 7, 2007

ARIES is an instrument concept that builds on MODIS and AIRS

- Advanced Remote-Sensing Imaging Emission Spectrometer
- ARIES based on MODIS and AIRS but with greatly enhanced capability: uses new technology.
 - Hyperspectral $(3.4 15.4 \mu m)$
 - Higher spectral resolution than AIRS
 - Higher Spatial Resolution
 - IR (1km vs 13.5 km on AIRS)
 - Global Coverage
 - Scans ±55°
 - High Calibration Accuracy and Stability for Climate
- ARIES Technology Ready for Flight!

ARIES Combines AIRS and MODIS IR Measurements into One System

AIRS High Spectral

AIRS

- 13.5 km IR IFOV
- 3.7-15.4 μm IR
- 2378 IR Channels
- $\lambda/\Delta\lambda = 1200$
- NEdT = 0.05 0.3 K
- ± 50° FOV

Improved:

- Horizontal Resolution
 - Spectral Resolution
 - Product Accuracy

High Spatial / High Spectral

ARIES

- -1 km IR IFOV
- 3.4-15.4 μm
- ->3000 Channels
- $\lambda/\Delta\lambda > 1000 (IR)$
- NEdT = 0.1 0.3 K
- ± 55° FOV

MODIS High Spatial

MODIS

- -1 km IR IFOV 0.25-0.5 km VNIR/SW
- 0.4-14.2 μm IR
- 20 RSB, 16 IR Channels
- $\lambda/\Delta\lambda = 20-50$
- NEdT = 0.05 0.3 K
- ± 55° FOV

ARIES Planned Improvements

- Improved Weather Predictions
 - Improved Boundary Layer Sensitivity
 - Essential for future high spatial resolution weather models (fvGCMs)
 - Surface Spectral Emissivity at 1km Resolution
 - Improved 3D water vapor winds in polar regions
 - Greatly Improved Regional Weather Prediction
 - Hurricanes: Improved track and intensity prediction
 - Tornados: First ever satellite observation and prediction through high resolution observations
- Improved Climate Model Validation
 - Relate regional scale processes to global scale models
 - ARIES Measures Primary greenhouse gases: H₂O, CO₂, CH₄, CO, O₃
- Natural Hazards and Applications
 - Image gases from fires as well as smoke
 - Improved volcano SO₂ plume detection and tracking.
 - All MODIS applications + Gases at 1km spatial resolution

ARIES Primary Products

- What's New
 - High spatial resolution gases and water (2km vs 50 km now)
 - Hyperspectral detection and classification
 - Improved Boundary Layer Sensitivity
- Products
 - Temperature and Water Vapor Profiles
 - Surface Emissivity and Temperature
 - Composition Profiles: O₃, CO, CO₂, CH₄, SO₂ (Boundary layer to Upper Troposphere)
 - Aerosol Properties
 - Cloud Microphysical Properties
 - Outgoing Clear and Cloudy Longwave Radiation
- Vis/NIR/SWIR Option (or Possible 2nd instrument)
 - Enhanced Vegetation Index, LAI/FPAR
 - Hyperspectral BRDF/Albedo
 - Land Cover Change
 - Ocean Color Products

MODIS Products Improved with ARIES

Aerosols

Polar Winds

Optional

Ocean Chlorophyll

Fires

SST

ENDVI

AIRS Products Improved with ARIES

National Aeronautics and Space Administration

Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

ARIES will follow AIRS in Support of NWP Centers and Regional Forecast Centers

ARIES Brings NASA Global Science Investigations to a Regional Scale

ARIES will bring
High Spatial
Resolution to
Infrared Sounding

MODIS Hurricane Isabel Dec 10, 2002

Relation to NPP and NPOESS

- ARIES Measures Key EDRs
 - Consistent with VIIRS, CrIS and OMPS
 - Exceptions
 - No Constant Resolution (VIIRS)
 - No Low-light-level Imagery (VIIRS)
- Provides higher spatial resolution and hyperspectral for advanced new Capability
- Provides several P³I Products at high spatial resolution
 CO, CH₄, CO₂
- Can synthesize response of MODIS, VIIRS, AIRS or CrIS for direct cross comparison

NPP and NPOESS C1 EDR's Met by ARIES

→ - Addressed by ARIES

√	Atm Vert Moist Profile	★		
${\swarrow}$				
\checkmark	Imagery			
\checkmark	Sea Surface Temperature			
$\frac{1}{\sqrt{2}}$	Sea Surface Winds	<u>\(\)</u>		
$\stackrel{\checkmark}{\swarrow}$		0		
	Aerosol Optical Thickness	★		
	Aerosol Particle Size	A		
	Aerosol Refractive Index			
	Albedo (Surface)			
	Auroral Boundary			
	Auroral Energy Deposition			
	Auroral Imagery			
	Cloud Base Height			
	Cloud Cover/Layers			
	Cloud Effective Part Size			
	Cloud Ice Water Path			
	Cloud Liquid Water			
	Cloud Optical Thickness			
	Cloud Particle Size/Distrib			
	Cloud Top Height	→		
	Cloud Top Hoight			

Cloud Top Pressure Cloud Top Temperature Down LW Radiance (Sfc) Electric Fields Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA) O ₃ – Total Column Profile			
Cloud Top Temperature Down LW Radiance (Sfc) Down SW Radiance (Sfc) Electric Fields Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintilation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	Cloud Top Pressure	\Rightarrow	
Down LW Radiance (Sfc) Electric Fields Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)			
Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintiliation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		*	
Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintiliation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	Down SW Radiance (Sfc)	★	
Electron Density Profile Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	• •	0	
Energetic Ions Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	Electron Density Profile	_	
Geomagnetic Field Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)			
Ice Surface Temperature In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		0	
In-situ Plasma Fluctuation In-situ Plasma Temp Ionospheric Scintilation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	Ü	*	
In-situ Plasma Temp Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		0	
Ionospheric Scintillation Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	In-situ Plasma Temp	0	
Med Energy Chgd Parts Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		0	
Land Surface Temp Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)			
Net Heat Flux Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA) ★		*	
Net Solar Radiation (TOA) Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		*	
Neutral Density Profile Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)		*	
Ocean Color/Chlorophyll Ocean Wave Character Outgoing LW Rad (TOA)	,	0	
Ocean Wave Character Outgoing LW Rad (TOA)			
Outgoing LW Rad (TOA)			
	1		
	**		

Precipitable Wate	r 🛣	
Precipitation Type	/Rate	
Pressure (Surface	/Profile)	
Sea Ice Characte	rization 💢	
Sea SFC Height/T		
Snow Cover/Dept	h 🚫	
Solar Irradiance	0	
Supra-Therm-Aur	ora Prop	
Surface Type	\bigstar	
Active Fires (App	lication product	
Surface Wind Stre	ess 🛇	
Suspended Matter 🔭		
Total Water Content		
Vegetative Index		

LEGEND

VIIRS (24)	OGPSOS (2)
○ CMIS (19)	CERES/ERBS
CrIS/ATMS (3)	S TSIS (1)
OMPS (1)	○ ALT (3)
SES (13)	

→ - Key Performance Parameters

○ - C2 or Descoped

Technical Approach

ARIES Channel Specifications and Resolution

	<u>Option</u>		<u>Baseline</u>			
	Vis/NIR	SWIR	MWIR1	MWIR2	LWIR	VLWIR
λ_{\min} (um)	0.40	1.22	3.39	6.20	8.70	11.36
λ_{max} (um) ν_{max} (cm ⁻	1.00	2.18	4.76	8.70	11.36	15.38
v_{max} (cm ⁻	10000	4587	2100	1150	880	650
1)	25189	8197	2950	1613	1150	880
$\lambda/\Delta\lambda$	146	441	2227	2585	1887	1552
$\Delta\lambda$ (nm), $\Delta\nu$	4.8	3.9	1.1	0.5	0.5	0.5
Nchan	254	254	787	999	637	674
IFOV (km)	0.25	0.50	1.00	1.00	1.00	1.00
SNR/NEdT	120-210	50-120	0.15K	0.3K	0.3K	0.5K

ARIES Baseline Concept

Small Change to Point Design will Allow Symmetric FOV and FPA

ARIES Tradeoff
FPA Size and Optics FOV
vs System Aperture
1km IFOV, 705 km Orbit
F# = 1 7

- Increase Aperture by 1 cm
- Reduce FPA Size Along Track Spatial
- Increase FPA Size Spectral Direction

ARIES Has Higher Spatial Resolution than Current and Future Sounders

Spatial Resolution For Spaceborne Optical Sensors

ARIES IR Spectral Resolution Better than AIRS or CrIS

Spectral Resolution For Spaceborne Optical Sensors

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Technology Developments Since AIRS Allow ARIES Today

AIRS BAE Systems PV/PC HgCdte 17 modules 2 x ~180 100 x 50 um

Rockwell **PV HgCdTe** 256 x 256 x 6

AIRS Reflective 1.1° **Grating Spectr**

MODIS Raytheon Vision Systems PV/PC HgCdTe 4 FPAs 10 x ~10 400 x 400 um

NGST Small Single Pulse Tube Cooler

AIRS

Large Dual Pulse

AIRS Large Dewar

SIRAS IIP3 High Efficiency Mini Dewars

Developed under NASA Technology Development Programs (IIP, etc.)

SIRAS IIP-1 ADVANCED GRATING OPTICS TECHNOLOGY

The Spaceborne Infrared Atmospheric Sounder (SIRAS) Spectrometer

Developed under NASA Instrument Incubator Program in 2001

No Moving or Active Parts

Mass: 2kg

Size: 10 x 10 x 14 cm

Field of view X-Track: 16.2°

Pushbroom Operation

Spectral Resolution: >900 (λ/Δλ) Number of Channels: 512 Each 4 Required for Full Spectral Range

Spectral Range: 12-15.4 μ m

PI: Hartmut Aumann (AIRS IR Proj. Sci.)

ARIES Exceeds AIRS and MODIS Performance

Vis/NIR/SWIR Spectral Resolution

IR Spectral Resolution

Vis/NIR SNR

IR NEdT at 250 K

ARIES Synthesizes MODIS Band 13

IR Calibration Based on AIRS

AIRS Frequencies Stable to <5 PPM Knowledge to < 1 PPM - L. Strow (UMBC)

ASL

- Full Aperture BB
- Full Aperture SV
- Active Thermal Control
- Extensive Pre-Flight Calibration

AIRS Radiometric Performance: Stable to <8mK/Y – H. Aumann (JPL)

Aumann et al 2004 "Evaluation of AIRS Data for Climate Applications" SPIE 5570b Las Palmas September 2004

Scanning HIS Validates Rad Accy to 0.2K – H. Revercomb (UW)

AIRS Stable enough to detect RTG Improvement

ARIES TRL is High

Subsystem	TRL	Comments
Scanner	9	Flight Proven on AIRS and MODIS
Telescope	9	Numerous similar reflective forms proven in space. Low Risk
Spectrometer	7, 9	Reflective Spectrometer in demonstration phase at JPL. Refractive Spectrometer Demonstrated on NASA IIP.
Focal Plane Assy	6, 9	Required Geometry Demonstrated on Ground, Similar Designs in Space
Dewar	9	Proven on AIRS
Cryocooler	9	Proven on AIRS and other programs
Blackbody	9	Proven on AIRS
Mechanical Systems	9	Proven on numerous flight missions
Electronic Subsystems	6, 9	Exact form proven in Lab, Similar Designs flown on AIRS and other Space Programs

Conclusions

- ARIES takes imaging and sounding to the next level
 - Hyperspectral LWIR (3.4-15.4 μm) with Vis/NIR/SWIR Option
 - Higher Spatial Resolution IR (1km vs 13.5 km on AIRS)
 - Higher Spatial Resolution Vis/NIR hyperspectral (250 m)
- ARIES will be a breakthrough in regional weather prediction while improving upon the AIRS capability for global models
- ARIES high resolution will greatly enhance climate modeling by
 - relating regional processes to global processes
 - observing surface-atmosphere interactions
 - observing sources and sinks of major greenhouse gases
- ARIES Applications build on those of MODIS
 - ARIES can synthesize MODIS bands directly
 - All MODIS capability + Atmospheric Gases
- Experience of NASA Terra and Aqua Mission Teams will reduce risk and cost of ARIES as an operational system
- ARIES will support future needs of a very large user base
- Technology development from NASA IIP and NOAA HES makes ARIES possible today